THE IMINO-WITTIG REARRANGEMENT

Alan R. Katritzky* and Narayan K. Ponkshe
School of Chemical Sciences, University of East Anglia, Norwich, England

and Department of Chemistry, University of Florida, Gainesville, U.S.A.

Summary: Iminoethers 15 are rearranged by LDA into α -aminoketones 18.

The rearrangement of the O-linked substituent in an α -oxycarbanion $\underline{1}$ to carbon giving $\underline{2}$ is generally known as the Wittig rearrangement. In the classical Wittig, the substituent Y in $\underline{1} \to \underline{2}$ is an alkyl group, but recently examples of the migration of other substituent types have been reported. Thus $\underline{3} \to \underline{5}$ has been denoted the oxo-Wittig, $\underline{4} \to \underline{6}^4$ is the dithio-Wittig, and $\underline{7} \to \underline{8}^5$ the sila-Wittig. We now report the first examples of the imino-Wittig rearrangement of type $\underline{9} \to \underline{10}$; we believe that this is a novel type although examples of the aza-Wittig $\underline{11} \to \underline{12}$ have been reported, albeit solely for the allylic systems shown.

Benzoyl-p-toluidide 13^7 was converted via the iminochloride 14^8 into iminoethers 15 (Table 1) by standard methods. Treatment of the imino-ethers 15a-c with lithium diisopropylamide (LDA) in THF converted them via the α -oxycarbanions 16 and the α -hydroxyimines 17 into α -amino ketones 18a-c (Table 2). The products were characterised by IR (ν NH at 3310-3400 cm⁻¹ and ν C=O at 1675-1690 cm⁻¹) and NMR spectra. Attempted rearrangement of 15d and 15e failed: here the R group is electron donor in character and this reduces the acidity of the CH₂-protons.

The metallations were conducted in THF solution at -5 \sim -0°C: the rearrangement 16 \rightarrow 17 appears to be fast.

Table 1. Preparation of iminoethers 15

<u>15</u>	R	Yield	$Mp^{O}C$	Crystal form ^a	Molecular formula	Found			Required		
						C	H	N	C	H	N
<u>a</u>	С ₆ Н ₅	74	65-66	Plates	$^{\mathrm{C}}_{21}^{\mathrm{H}}_{19}^{\mathrm{NO}}$	83.4	6.2	4.7	83.7	6.4	4.6
<u>b</u>	2-Pyridyl				$^{\rm C}_{20}^{\rm H}_{18}^{\rm N}_{2}^{\rm O}$				79.4		
<u>c</u>	\underline{p} -ClC $_{6}^{H}_{4}$	84	102 -105	Prisms	$C_{21}^{H}_{18}^{ClNO}^{\underline{b}}$	75.0	5.4	4.1	75.1	5.4	4.2
<u>d</u>	Furfuryl	77	78-80	Needles	$^{\mathrm{C}}_{19}^{\mathrm{H}}_{17}^{\mathrm{NO}}_{2}$	78. 1	5. 9	4.8	78.3	5.9	4.8
_ <u>e</u>	\underline{p} - \underline{H}_3 COC $_6$ \underline{H}_4	67	73-75	Prisms	$^{\mathrm{C}}_{22}^{\mathrm{H}}_{21}^{\mathrm{NO}}_{2}^{}$	79.8	6.4	4.2	79.7	6.4	4.2

a All crystallised from 95% EtOH, except 15e crystallised from EtOAc - petroleum ether (40-60°). b Found: Cl, 10.5. Required: Cl, 10.6%.

Table 2. Preparation of α -aminoketones 18

18	R	,•	Mp ^o C	Crystal form	Mol e cular formula	Found	Required	
							C H N	
<u>a</u>	$C_6^H_5$	46	143-145	Needles ^{a, b}	$C_{21}H_{19}NO$	83.3 6.4 4.6	83.7 6.4 4.6	
_	2-Pyridyl	42	125-127	Plates ^C	$C_{20}^{H}_{18}^{N}_{2}^{O}$	79.7 5.6 9.4	79.4 6.0 9.3	
c	$\underline{p}\text{-ClC}_6\overline{H}_4$	43	145-147	Needles ^a	$C_{21}H_{18}CINO^{9}$	75.0 5.3 4.2	75.1 5.4 4.2	

aFrom 95% EtOH. bLit. m.p. 145-146° [C.L. Stevens and R.J. Gasser, J. Am. Chem. Soc. 79, 6057 (1957)]. cFrom EtOAc - petroleum ether (40-60°). dFound: Cl, 10.6. Required: Cl, 10.6%.

REFERENCES

- (1) G. Wittig and L. Löhmann, Annalen, 550, 260 (1942).
- (2) D.L. Dalrymple, T.L. Kruger and W.N. White in The Chemistry of the Ether Linkage (Edited by S. Patai), p. 617. Interscience, London (1967).
- (3) P.A. Crooks, R.H.B. Galt and Z.S. Matusiak, Chem. Ind. (London) 693 (1976).
- (4) T. Hayashi and H. Baba, J. Am. Chem. Soc. 97, 1608 (1975).
- (5) R. West, R. Lowe, H.F. Stewart and A. Wright, J. Am. Chem. Soc. 93, 282 (1971).
- (6) M.T. Reetz and D. Schinzer, Tetrahedron Letters 3485 (1975).
- (7) Vogel's Textbook of Practical Organic Chemistry, 4th Edn., p. 684. Longman, New York (1978).
- (8) F. Just, Ber. 19, 979 (1886).